Weighted slant Toep-Hank Operators
نویسندگان
چکیده مقاله:
A $it{weighted~slant~Toep}$-$it{Hank}$ operator $L_{phi}^{beta}$ with symbol $phiin L^{infty}(beta)$ is an operator on $L^2(beta)$ whose representing matrix consists of all even (odd) columns from a weighted slant Hankel (slant weighted Toeplitz) matrix, $beta={beta_n}_{nin mathbb{Z}}$ be a sequence of positive numbers with $beta_0=1$. A matrix characterization for an operator to be $it{weighted~slant~Toep}$-$it{Hank}$ operator is also obtained.
منابع مشابه
Essentially Slant Toeplitz Operators
The notion of an essentially slant Toeplitz operator on the space L is introduced and some of the properties of the set ESTO(L), the set of all essentially slant Toeplitz operators on L, are investigated. In particular the conditions under which the product of two operators in ESTO(L) is in ESTO(L) are discussed. The notion is generalized to kth-order essentially slant Toeplitz operators. The n...
متن کاملGeneralised Slant Weighted Toeplitz Operator
A slant weighted Toeplitz operator Aφ is an operator on L(β) defined as Aφ = WMφ where Mφ is the weighted multiplication operator and W is an operator on L(β) given by We2n = βn β2n en, {en}n∈Z being the orthonormal basis. In this paper, we generalise Aφ to the k-th order slant weighted Toeplitz operator Uφ and study its properties. Keywords—Slant weighted Toeplitz operator, weighted multiplica...
متن کاملOn kth-Order Slant Weighted Toeplitz Operator
Let β = [formula: see text] be a sequence of positive numbers with β0 = 1, 0 < β(n)/β(n+1) ≤ 1 when n ≥ 0 and 0 < β(n)/β(n-1) ≤ 1 when n ≤ 0. A kth-order slant weighted Toeplitz operator on L(2)(β) is given by U(φ) = W(k)M(φ), where M(φ) is the multiplication on L(2)(β) and W(k) is an operator on L(2)(β) given by W(k)e(nk)(z) = (β(n)/β(nk))e(n)(z), [formula: see text] being the orthonormal basi...
متن کاملOn reducibility of weighted composition operators
In this paper, we study two types of the reducing subspaces for the weighted composition operator $W: frightarrow ucdot fcirc varphi$ on $L^2(Sigma)$. A necessary and sufficient condition is given for $W$ to possess the reducing subspaces of the form $L^2(Sigma_B)$ where $Bin Sigma_{sigma(u)}$. Moreover, we pose some necessary and some sufficient conditions under which the subspaces of the form...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 9 شماره 1
صفحات 137- 150
تاریخ انتشار 2020-01-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023